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J. Phys. A:  Gen. Phys., 1971, Vol. 4 .  Printed in Great Britain 

Motions in a Bose condensate 
11. The oscillations of the rectilinear and large circular 
vortex lines 

J. GRANT 
School of Mathematics, University of Newcastle upon Tyne, Newcastle upon 
Tyne, NE1 7RU, England 
MS.  receiced 23rd April  1971 

Abstract. The linearized perturbation equations for the rectilinear and large 
circular vortex lines in a Bose condensate are studied. An asymptotic matching 
procedure is given whereby the frequency w for the (bound state) oscillations 
of the rectilinear vortex, for wavelengths large compared with the healing 
length a, is found to be given by 

to the leading order, where IC is the quantum of circulation and 2 r / A  is the 
wavelength. A similar asymptotic procedure is employed to investigate the 
behaviour of the large ring vortex when its circular axis is slightly perturbed. 
It is found that the vortex, whose radius c is large compared with a, is stable 
for all small displacements (and executes simple harmonic vibrations). For the 
state of oscillation in which there are p waves around the circumference of the 
ring the frequency is given by the relation 

to the leading order in 1 IC, where 

f(0) = 0. 
1 

f ( p )  = 1 +++...+ - 2 p - 1  
In the case of the rectilinear vortex, the eigenvalue spectrum for arbitrary R is 
studied numerically. 

1. Introduction 
In  a recent paper Roberts and Grant (1971 to be referred to as I) have examined 

the structure of the large circular vortex in liquid helium, using as a model the Bose 
condensate which is characterized by a wavefunction \r whose normalization yields 
the total number of particles. This one-particle distribution wavefunction obeys the 
eauation 

where M is the particle mass. A short-range repulsive potential Yo  of delta-function 
type, which was proposed by Ginzburg and Pitaevskii (1958), is incorporated. T h e  
total number of particles N is given by 

N = I jY"f?j2 d V  
U 

695 



696 J .  Grant 

and 

j = (T*V?Y-YVT*) d V  (1.3) 21 7 2) 
is the number current density (see Gross 1961 and 1963). 

I n  this paper, which is a sequel to I, the time-dependent oscillations of the 
rectilinear and large circular quantum vortex lines in the theory are examined by 
considering small perturbations to the potential and density when the basic 
equations (1.1) to (1.3) are reduced to fluid mechanical form. 

The vibrations of a classical rectilinear vortex were studied by Thomson (1880) 
who obtained expressions for the frequency of oscillation w of vortices with various 
core structures, in the long-wavelength limit. For a hollow irrotational vortex he 
obtained the result 

w = -(In K R 2  (i- - - y )  4% 

where ZTik is the wavelength of the vibration, a is the core radius, K is the circulation 
and y is Euler's constant (z 0.577), while for a solid-core vortex with solid-body 
rotation he found 

In  the Bose condensate theory the oscillations of the quantum rectilinear vortex 
were first discussed by Pitaevskii (1961). He showed that for 6u < 1 the vibrations 
are similar to those of an ordinary classical liquid and have the dispersion relation 

All of (1.4) to (1.6) are the same to the leading (logarithmic) order as 6u --f 0, and 
this shows, physically, that waves of such a large wavelength do not distinguish 
different core structures. In  the next order, however, the core structure makes itself 
felt, as a comparison of (1.4) and (1.5) will indicate, and one of the objectives of this 
paper is to refine Pitaevskii's result (1.6) to include this effect. This is achieved by a 
formal asymptotic analysis. It is found that 

(1.7) 

where eC is the energy per unit length of the 'core' of the vortex in units of p m ( ~ / 2 ~ ) 2 .  
Here pa is the fluid density at infinity and if pmRO2 denotes the radial density function 
then eC ( N 0.385) is given by (cf. I equation (4.12)) 

E~ = ,," Y ($)'dr+ fmg&+& O Y  1," r(l-Ro2)2dy. (1.8) 

In  4 4 a parallel asymptotic analysis is developed to treat the interesting problem of 
the subsequent behaviour of a large ring-vortex when its circular axis is slightly 
perturbed. It is found that the vortex ring, whose radius c is large compared with a, 
is stable for all small displacements. I n  the state of oscillation in which there are p 
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waves around the circumference of the ring the frequency is given by 

to the leading order in c - l  where 

p 1  
n.;l 2n-  1 f ( P )  = c - f(0) = 0. 

This result may be compared with that obtained by J. J. Thomson who, in his 
Adam's Prize Essay of 1882 (Thomson 1883), conducted a kinematical investigation 
of a large classical hollow core vortex ring which was disturbed in the same way. His 
analysis yielded 

(1.10) 

and again it is apparent that the vibrations of the quantum and classical ring vortices 
are very similar ; the frequency being influenced only in the second order by the core 
structure. 

2. The general perturbation equations 

reduced to the following fluid mechanical form : 
Following the theory of (I) the condensate equations ( 1 . 1 )  to (1.3) have been 

a+ 7 2 P 1 ' 2  2---= (V+>"p-l--- 
St P1I2 

where p is the fluid density and 4 is the potential so that the velocity u = -V4. The  
unit of circulation in the theory is 27 and the unit of length used in the non-dimen- 
sionalization is the healing length a, which in applications is typically a few Ingstroms. 

I t  is natural to the fluid mechanicist to consider the oscillations of the vortex lines 
in the condensate as a perturbation to the potential and density in the basic 
equations (2.1) and (2.2). Therefore we set the density p equal to R2 and represent 
the potential and square-root density by 

(b = + s + 4 '  R = R,9 + R' 
where 4' and R' are small perturbations to the steady-state potential 4, and density 
R, so that second-order quantities in the primed variables may be neglected. Then 
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substitution into (2.1) and (2.2) yields 

where the repeated suffix denotes summation over i = 1, 2, and 3. The variables 4, 
and R, satisfy the steady-state equations 

From these equations we can deduce an interesting integral relationship which will 
later become important in our determination of the frequency of the oscillating vortex 
lines. First we manipulate equations (2.3) to (2.6) and then integrate over any fixed 
simply connected region, of volume V and enclosed by a surface S, in which 4,) Rs,  
4') R' and their derivatives are finite and single valued. We substitute for V2R,,IRs 
from (2.6) into (2.4)) multiply (2.4) by 8R,/8xj and also multiply (2.3) by a+,/8xj and 
subtract this from (2.4). Then, on integrating over the volume V and using the 
divergence theorem, integration by parts and equation (2.5), we eventually obtain in 
vector notation 

a 
- (R,VR,$'-R,V+,R') d V =  R'(ds .V)VR,-  s, at  

- [ 2RSR'V4,(V4, . ds) - Ri,"V+,(V+'. ds) + r Ra2(V4, .V+') d s  

(2 .7)  

The  possible existence of this relationship was suggested by Professor P. H. Roberts 
after an analogous result (equation (3.16))--which can be regarded as a particular 
application of (2.7)-had been obtained in the following analysis of the rectilinear 
vortex oscillations. 

3. The oscillations of the rectilinear vortex 
We examine the form of the pertubation equations (2.3) and (2.4) for the rectilinear 

vortex using cylindrical polar coordinates (r ,  8, x). The steady-state solution Rs = R,  
and +s = appropriate to a rectilinear vortex is given by Ginzburg and Pitaevskii 
(1958) as 
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satisfying Ro(oo) = 1. On substituting (3.1) into (2.3) and (2.4) we find 

8R’ l a  1 2 2  dRoa(6’ 2 %R’ 
(6‘+2-- + -- “1 dr %r r2 a0 

(3.2a) 

If we now look for solutions of the form 

(6’ = +(r)sin(mO+hz-wt) R I  = ~ ( r )  cos(me + k x  - (3 .3)  
equations (3.2) yield 

(3.4u ) dR0 U+-  R = R  - + - - -  k + -  ++2--- ( r:) ‘(z2 dr ( dr  dr 

From these equations we can derive the eigenvalue equations in the form obtained by 
Pitaevskii (1961) and Fetter (1965). If we let i+h = Ro(6 and introduce variables 
U and v such that U = R+#, v = R-t,b and then add and subtract (3.46) and (3.4a), 
we obtain 

d2u 1 du 
dr2 r dr 

- + - - -  - + k 2  - 1 + 2RO2) v -  RO2u = - 2wv 
dr2 Y dr 

(3 .5  a)  

(3.5b) 

- + - - -  f1  ~ +P- 1 +ZR,Z) u-Ro2v = 2wu 

d2v 1 da fl;2~)’ 

which are precisely the equations referred to above. We have the physical inter- 
pretation that (u+v)/2 = R and (u-v)/2R0 = + are the perturbations to the density 
and potential respectively. 

Equations ( 3 . 5 ~ )  and (3.56) are unaltered by either of the transformations 
( K t ,  - K )  or ( u t j v ,  w t ,  - U  and mt, -m). In  fact if 

+’ = (6( r )  sin( m0 + Kz - ut) 

is the perturbation to the potential due to the oscillation, the only other independent 
solution with sine dependence is 4’ = +(r) sin ( m e - k z -  at). Thus two possible 
solutions for 4’ are of the form 

(6’ = +(r)  cos kx sin(m0 - ut) (6’ = +(r)  sin kz cos(m0 - ut). 

We see that we are forced to look for travelling-wave solutions and in every case at a 
given height z the waves of constant disturbance proceed around the core in a 
direction opposite to the circulation of the vortex itself. 

We now examine the solutions to (3.5a) and (3.56) for small r and large r.  The 
equations have a regular singularity at the origin and as discussed by Fetter (1965) 
there are four linearly independent solutions valid there. It is not difficult to show 
that these four solutions have the following behaviour: 

U oc P + 3 ,  v oc r m - 1  

U a r 5 - m ,  v cc r l - m  
U oc r m + i ,  v oc r m + 5  

U cc r - ( l fm),  v cc r 3 - m .  (3 4 
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For large Y the equations (3 .5~)  and 

d2u 1 du + -- 
dr2 r dr 

d2u 1 dz! + -- 
dr2 Y dr 

_. 

- 
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(3 S b )  become 

- ( k 2 +  1 +2w)u-z!  = 0 ( 3 . 7 ~ )  

- ( I ? +  1 - 2 w ) u - u  = 0 (3.7b) 

where terms in r W 2  have been neglected. These equations are independent of m so 
that the asymptotic behaviour for large r is the same for all m. The solutions to (3.7) 
are 

where 
U, ot y - l i 2  eBr 

(P”(k2+1))2-(1+4w2) = 0 

so that /3 is given by one of the relations 

p12 = k2 + 1 + (1 + 4w2)’12 p 2 2  = k2 + 1 - (1 + 4w2)? 

For real values of the wavelength and frequency, P12 is always positive and there are 
two solutions which behave like r-l12 exp( i: Ply). If in addition 4 w 2  < k2(k2+2) ,  
then PZ2 is positive and the other two solutions behave like r - l i 2  exp( i: ,&r). When, 
however, 4 w 2  > k2(k2+ 2), PZ2 is negative and equal to - dc2 say, and the two 
remaining solutions behave like r-1I2 exp( & irr). 

Each of the solutions (3.6) at the origin is, when followed across the interval 
0 < Y < CO, a linear combination of all four of the solutions regular at infinity. I n  
either of the cases 4w2 $ k2(k2 + 2) the behaviour of each of the solutions at the origin 
is dominated by the Y - ~ / ~  exp(P,r) term at infinity. If, however, we combine the 
solutions in (3.6), finite at the origin, in the correct ratio, we can cancel this growing 
exponential term. When 4 w 2  > k2(k2 + 2) the solutions will then behave like 

U ,  TI ot r-1!2{al  exp( -p ly)  + b, exp( - i w )  + c, exp(i rr)}.  (3.8) 
The  solution is oscillatory and decaying and there is a continuum of eigenvalues. In  
the case when 4 w 2  < k 2 ( k 2 + 2 )  the solution will behave like 

U ,  E’ ot r-lI2(a,  exp( -Ply)  + b2 exp( -lg2r) + cp exp(P2r)). (3.9) 
In  general the constant c2 in (3.9) will depend on m,  k, and w, and for a solution 
bounded at infinity we require that c2(m, k, w )  = 0. If there are such roots to this 
equation then the solution in (3.9) will decay exponentially and the eigenvalues will 
show up as bound states below the edge, 4w2 = k 2 ( k 2 + 2 ) ,  of the continuum region. 
This has been discussed previously by Fetter (1965). 

The special case m = 1 
In the case m = 1 it follows from (3.6) that since, for small Y, Ro N k’r (where k’ 

is a constant: I equation (3.14)), the radial parts of the acceptable solutions for the 
perturbations #‘ and R’ behave as 

+ R a y 2  (3.10) 

4 % -  R oc 1. (3.11) 
1 
Y 



Motions in a Bose condensate 70 1 

These two solutions in this special case are easily interpreted. Consider first (3.10) 
which corresponds by (3.3) to 4’ = ET sin(O+kz-wt) for small r .  In  the long- 
wavelength limit k + 0 the velocity -V+‘ due to this perturbation is 

{E sin(O+kx- ut), E cos(6+Kz- ut), O}. 

This mode may be interpreted as a physical displacement of the vortex axis which 
moves in a circular orbit in an opposite sense to the circulation. In  such a displace- 
ment we can show that there are perturbations to + and R of the form (3.11). 

Y 

Figure 1. Indicating the new potential and density at a point P when the vortex 
axis is moved an arbitrarily small distance E from 0 to Q. 

We consider a cross section of a rectilinear vortex whose axis is along Ox. In  the 
(r, 6 )  plane shown the axis is at 0 and the potential and density at P are given by 
q3, = 6 and R, = RO(r). If the axis is displaced an arbitrarily small distance E to a 
point Q ,  the new potential and density at P are 4,, = 0’ and R,, = Ro(r’). The 
perturbations to the potential and density are therefore 

E sin 6 dR0 
4 1  = +,, - q3 = - R ’ =  R - R =  - - E C O S ~ -  

dr pn Y 

and for r -+O the radial parts of the perturbation functions are of the form (3.11). 
We note here that, for K = 0, there are in fact exact solutions for + and R 

(3.12) 

with the eigenvalue w = 0, which corresponds to the displacement just considered. 
This can be verified by directly substituting m = 1, k = 0 and w = 0 into (3.4). 

Backed by this physical insight of the m = 1 mode, we can now proceed to 
compute the frequency o of the ‘long-wavelength’ oscillations. We examine 
equations (3.4) for m = 1, in the limit k + O .  The method we use to solve these 
equations is that of ‘matched asymptotic expansions’. The solution is first sought in 
an ‘inner’ cylindrical region, of radius Y, centred on the 0% axis, as an expansion about 
the exact solution (3.12). The  resulting solution is then examined for r --f CO. In  this 
limit nonuniformities arise and so the solution to (3.4) is also found in an ‘exterior’ 
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region characterized by a new stretched coordinate s = kr, which is of order unity 
in the region of nonuniformity. This solution is examined in the limit s -+O and 
finally the two asymptotic solutions are matched in an 'overlap domain', where both 
the inner and outer expansions are valid. 

Interior soluiion 
For the inner expansion we express R and 4 by writing 

(3.13) 

while we also write w in the form w = wlk2. We justify thislast step byequation(3.18) 
in the subsequent analysis, though in any case it is apparent when we compare with 
(1.4) and (1.5). Then on substituting (3 .13)  into (3 .4)  and equating coefficients of k2 
we obtain 

dR0 Ro - 2 ~ 1 -  + - (3 .14~~)  
dr  r 

Ro dRo. (3.14b) + - - - A ) R l -  R l - 2 R o - = 2 ~ l - - -  4 1  

P 2  r dr 
d2 1 d 

(G r d r  Y 

After substituting for Ro  for large r from I (equation (3 .15))  we find that the complete 
solutions are of the form 

(lnr)2 l n r  A2 
= 4-r In r + A,r + - + - ( 2 A 1 + 2 ~ 1 + 1 ) +  - +... ( 3 . 1 5 ~ ~ )  

2r Y T 

(3.15b) 

Here A, and A, are constants which multiply the complementary functions and terms 
involving them must be matched with corresponding expressions in the expansion 
of the outer solution about s = 0. 

Equations (3 .14)  have an interesting property which is important to us in 
determining w .  If we multiply (3.14a) by rdRo/dr  and (3.14b) by Ro  and then 
subtract and rearrange using (3 .1) ,  we have 

d dRodRl d2Ro 41 d41 d dR RU2 
dr dr  dr dr2 Y dr  dr  
- ( r - -  -y- R ~ - R , , ~ -  - ~ , 2 - )  = 2wl--(~02)  - (. (2) + -1. Y 
On integrating from 0 to co we then obtain 

Substitution of the values of RI, +1 and Ro for large and small r finally gives 

dRo 
- ( 2 4  ++) = 2W1- 

(3 .16)  

(3.17) 

where Al is the constant appearing in (3 .15)  and the bar through the second integral 
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denotes its finite part, for although RO2/r behaves like 1/r for large r, the divergent 
logarithmic term is cancelled by a similar term from the left hand side of (3.16). 

It is important to note that the integral result (3.16) can be obtained as a special 
application to the rectilinear vortex, of the general integral relationship deduced 
in $2.  To  show this we need only integrate over the right-cylindrical volume V 
with axis on Oz and whose cross section is an annulus with radii 6, l? which has a 
cut along 6 = 0. The ends of the cylinder are the plane surfaces at z = -rr/2k and 
z = ri2k parallel to the ( r ,  0) plane. This volume is simply connected and so 
$,, R,, +' and R' are single valued. We use the inner expansion for +' and R' and 
let 6 + 0 and l? + cc on the inner scale. Then on applying (2.7) over V ( 0  < r < CO, 

0 < 6 < 2rr and -7~/2k < x < rr/2k) and resolving along the constant unit vectors 
1, and l,, we obtain two identical scalar relations of the form 

2w[Ro2]; = k2  
(r ($)2 + y) dr 

d41 41 R, - Ro2 -- Ro2 - 
dr 

(3.18) 

which reproduces equation (3.16) when w is represented by w = wlk2. 

Exterior solution 

and then replace r by sik. Then in terms of s the equations become 
For the outer independent variable we use s = kr. We expand (3.4) for large r 

k4 d+ R 
2w,k2R = k2  1- - - + -- - I +  - ++2--  -2k2- +... (3 .19~)  

2 w 1 k 2 ( l - i ) +  = k2(-+-- d2 1 d - ( l + ~ ) ] R - 2 ( l - ~ ) R - ~ ( 2 - ~ ) 4  .... 
( :SI) ($ i d", ( si)] s2 ds S2 

ds2 s ds 
(3.19b) 

On expanding R and 4 by 

R = REl+k2RE2+ ... 4 = '$El+k2'$E2+.*. (3.20) 

substituting into (3.196) and equating successive powers of k2 we obtain 

R E ,  = 0 = - f )  '$El* (3.21) 

From (3.19~) we also have 

(3 .22~)  

The  solution to (3 .22~)  bounded at infinity is the modified Bessel function of first 
order K,(s) and the expansion of this solution about s = 0 gives 

(3.23) 
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where C is a constant. Then from (3.21) and (3.223) we find 

(3  2 4 b )  

Matching 
The inner solution for Y -+ cc must match the outer solution for s + 0 to all terms. 

The process fixes all unknown constants and gives a consistent solution. T o  express 
the inner solution for large Y in terms of s we replace r by sjk and In Y by In s- In k 
in (3.15). We obtain 

+ 2 w  , + 1)  + . . .) (3.25a) 

1 Ins  1 
R = -k3 - + - - - (  A,-+lnk+w,)+  ... 

(s3 2s s 
(3.25b) 

A comparison of (3.25) with the corresponding terms in the exterior solution for 
small s from (3.23) and (3.24) consistently shows that 

C = k  
3 
I 

Z A , + ~  = - (Ini - y ) .  

Then on substituting into (3.17) we obtain 

(3  2 6 )  

where eC is the dimensionless energy per unit length of the ‘core’ of the vortex and is 
given by (1.8), In  terms of our physical variables this result finally becomes (1.7) 

The determination of the complete spectrum for w for arbitrary wavelengths 
requires computational work. For this purpose it is convenient to utilize the eigen- 
value equations (3.5) with U and E as the dependent variables, Ro having been 
previously determined from (3.1). The  analysis between (3.5) and (3.9) then applies. 
Bound states with the corresponding exponentially decaying eigenfunction solutions 
were obtained in the cases m = + 1, - 1, 0 and 2. The eigenvalue in the case m = 1 
is shown graphically in figure 2 for the range 0 < k < 0.12, together with the 
theoretical eigenvalue valid for the long-wavelength limit k + 0. The  agreement 
is close, the discrepancy at the origin, where a broken curve is shown, being due to 
numerical difficulties. In  figure 3 the bound state m = 1 is drawn, for the range 
0 < K < 2.5, below the edge of the continuum region. The  bound state branches 
for m = 0 and m = 2 are so close to the continuum region that they are omitted from 
the figure for clarity. 
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i‘, , , , 
0 0 04 0 08 

W a v e n m b e r  k 

Figure 2 .  Comparison of the eigenvalue 
obtained numerically from ( 3 . 5 )  for the 
bound state m = 1 for small k, with the 

theoretical value given by ( 3 . 2 0 ) .  

Wavenumber k 

Figure 3 .  The bound state m = 1 
below the edge w 2  = k 2 ( k 2 + 2 )  of 

the continuum region. 

4. The oscillations of the large circular vortex 
An asymptotic analysis similar to that developed for the rectilinear vortex equations 

can be employed to solve the perturbation equations (2.3) and (2.4) for the large 
circular vortex whose radius, in nondimensional units, is c, where c 1. The frame 
of reference adopted is that with which Roberts and Grant have recently investigated 
the structure of the vortex in its steady state, that is, one in which the vortex is at 
rest and the fluid at infinity is moving with velocity U,(c). If (CO, 8, 2) are cylindrical 
coordinates as shown in figure 4, the singularity of curl U is on the circle 
VV’(z = 0, W = c) and Ox is the axis of symmetry. Coordinates (T, x, e),  often 
referred to as displaced polars, are also introduced where 

ij = C-TCOSX x = Ts inx .  

The distance V’P T, is given by 

TI2 = ~ c ~ - ~ c T c o s x + T ~ .  (44 
Again we examine the perturbation equations, in the limit c --f CO, using ‘inner’ 

and ‘outer’ expansions. First the solution is found in the inner toroidal region 
centred on VV‘ whose radius is T and then this is examined in the limit T --f a. 
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For the ‘outer region’ we use the stretched coordinate s = Tic and consider the 
solution as s -+ 0. Finally, the two asymptotic solutions are matched in the ‘overlap 
domain’ (where both the inner and outer expansions are valid). 

V‘ c 

T increasics 

Figure 4. Illustrating the circular vortex and its related coordinate systems : 
(5, 8, z) are cylindrical coordinates, (T, x, 8) are displaced polar coordinates. 
The singularity associated with the vortex line is indicated by V and V’ in the 

cross section. 

Inner solution 
The steady state solution for R, in the inner region has been given in I in powers 

of l i c  as far as the second term. For this analysis we require an extra term and 
therefore we set 

1 1 
R,  = Ro( T) + - RI( T )  COS x + 2 ( Q o (  T )  + Q z (  T )  COS 2 ~ ) .  

C 
(4.3) 

The solutions for Ro and R, for large T are given in I (equations (3.15) and (3.23)) 
and in addition we find that for large T 

+-(4B+1)- 
(In T ) 2  In T 

8 8 
Q o =  -- 

In T (In T ) 3  
2 4 T2 

Q Z  = - -$(8F+3B+1)-  ~ + ... 

(4.4a) 

(4.4b) 

where B is a constant given in I equation (3.27), F = (3h-4B+2)/16 and 
X = In (8c) -2. Similarly we represent the stream function $s for the flow by 

( see I equation (3.2)) 
1 

$ 8  = c$o( T )  + $l( T )  cos x + - (Po( T )  + P2( T )  cos 2x1 (4.5) c 
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and for large T 
TZ T2 
8 16 

Po = -In T -  -(4B+3)+ ... 

T2 
16 

P2 = - -In T+FTZ--  In T +  ... . 

In  terms of this stream function the velocity is given by 

and hence we obtain 

( 4 . 6 ~ )  

(4.6b) 

1 
sin x, Zo cos x, 0 (2, sin 2x, Z2 + Z,  cos 2x, 0) 1 1 *1 

U , =  ( ' T ' )  0 - 0  + i(m 
where 

--I- 

ROT ' 2RO2T 
(4.84 

The  steady-state potential t$s is given by 

1 1 
t$s = -x+  -G(T)sinX+ - H ( T ) s i n 2 ~  

c c2 
where 

_ -  - -gz,. H 
T 

(4.9) 

(4 .10~)  

(4.10b) 

The  solutions of the perturbation equations for the large circular vortex resemble, 
in the limit c --f CO, the solutions for the rectilinear vortex obtained in $ 3 ,  and again 
we can find the inner expansion by iterating about the exact solutions whose physical 
significance we have discussed. In  this case, however, we look for solutions of the form 

(4.11~) 
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1 + .. { a P ( R + S c o s 2 ~ ) - y p U s i n 2 ~ )  

(4.1 l b )  

Here J ,  K ,  L, iV, N ,  P,  Q,  R, S,  U ,  V ,  W, X and Y are all functions of T, and c tp  

and y?, are functions of time which have different amplitudes cl and e2. From a 
subsequent application of (2.7) we will find that we must take a p  and y p  as 

1 1 
c2 

+ - { ~ r , ( V c o s ~ +  T.17cos3>o-y,(Xsin~+ Ysin3x)) . 

'yo = €1 cos (u t+p )  yp = E* s in(wt+p)  (4.12) 

where w can be written in the form w = w2ic2 and p is an arbitrary phase angle. 
It is to be noted that (even though in the rectilinear case we were compelled to 
consider a progressive wave solution) when a similar solution of the form 

was taken for the circular vortex (i.e. cl = c2 above), this eventually led to two 
contradictory values for w .  The significant point that the more general form, given 
by (4.1 1) and (4.12) with cl and different, should be considered, was a suggestion of 
Professor P. H. Roberts. I t  will transpire that when the integer p ,  which represents 
the number of waves around the circumference of the ring, is large then 

The solutions (4.1 1) represent the perturbations to the density and potential of a 
vortex ring which is disturbed very slightly from its circular form in the z = 0 plane 
and whose initial configuration is given by 

- O(l/p2). I n  the general case this is not so. 

R, = C + X , . ,  COSPO 
z, = y p  cospe  

(4 .134  
(4.1 3 b) 

where R, and Z,  are the radial distance of the singularity of the vortex from the 
axis Oz and its height above the z = 0 plane. For the displacement (4.13a) we find that 

sin x 
T 

x -+x-"p--cospo T -+ T f x ,  COS x COSPO 

and the new density and potential are given by substituting these expressions into (4.3) 
and (4.9) and neglecting second-order terms in a, and y p .  On subtracting the old 
potential and density we obtain 4' and R'. Similarly, for the disturbance (4.13b), we 
find 

cos x 
x - + x - Y P T  cos PO T --f T-y,sinXcospO 

from which we can compute 4' and R'. The combined effect of both displacements is 
to give rise to the perturbations in (4.11). 

We now substitute from (4.11) into the perturbation equations (2.3) and (2.4) with 
the appropriate expressions for the operators V* and V (cf. I equations (2.44), (2.45) 
and (3.1)). On equating coefficients of c- lap cosp0 and c - l x ? ,  cos 2x cosp8 in (2.4) 
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and expanding for large T we obtain 

1 (In T ) 2  In T 
,(SB+ 1)-- + ... -2R+ R+.. .  = -.-+------' 

2T2 T4 T4 

In T 1 In T 

(4.14~) 

d2 1 d 

-( 4B+1)+-+ .... s+ ... = - - 
4T4 (4.14b) 

T2 (dT2 T d T  T2 2T2 
43 d2 1 d 

-2s+ - + -- + -- - 

while on equating coefficients of c - l y P  sin 2x cosp0 and expanding we have an 
equation for U and L which is identical to (4.14b) in S and J. Similarly, after equating 
coefficients of c - l yP  cosp0, c - b P  sin 2x cospe and c- lyP cos 2% cosp0, for large T(2.3) 
yields 

1 1 n T  1 4 In T 
- -_ + - - --(4B+l)+ - + ... (4.1 5 a) 

d K  
d T -  2 T  T3 2T3 T5 
_ -  

In T 
T4 

4B (In T ) 2  
- -- -2- + ... 

T4 TO (4.15b) 

and again an equation for U and L identical to (4.1%) in S and J. On integrating 
(4.15~) we find 

In T B In T 
2T2 T 2  T4 

K = -8 In T + x -  -. + - - - + ..* 

where R is a constant of integration, and (4.14~) gives 

1 (In T ) 2  In T 
R = - - -  +@B+l)-  +... . 4T2 2T4 T4 

The pair of equations (4.14b) and (4.1%) yield 

(In T)2  I n  T 
J = L = 4- +3(4B+ 1)- + ... 

T2 

(4.16) 

(4.17) 

(4.15) 

In T 1 
S = U =  - - + -( 4B+3)+ .... 

2T2 4T2 
(4.19) 

The  second-order equations, obtained from (2.3) by equating coefficients of 

C - ~ G C ~  cos x cospB, c - 2 x p  cos 3x cosp0, C - ~ C I ~  sin x cosp0 and c - 2 y p  sin 3x cosp0 

respectively and expanding for large T,  are 

(4.20b) 

In T 1 
") zT - 

- 2 X f - -  +... = 
T2 
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and an equation for Y and Q identical to (4.20b) in W and N.  In  addition after 
equating coefficients of 

C - ~ C I ~  sin x cosp6, sin 3% cosp6, c - ~ Y ,  cos x cosp6 and C - ~ Y ,  cos 3x cosp6 

in (2.4) for large T,  we have 

(TE 1 d  ( T g )  
(4.2 1 b) 

( 4 . 2 1 ~ )  

The equation for Q is the same as (4.21b) in N. These three sets of equations have 
solutions of the form 

M = @P-$)Tln T + D , T + O  ___ 
('ln:'4 

4- &+-+-"-  B €2 (In T)3  v =  I( Z P  2-1 ) -  2 l n T  T 'i 4 3 2  -I- - €1 - 2 )  + 0 (7-) (4.22n) 

3 T  
32 

N = Q = - + O  

(4.226) 

where D1 and Dz are constants which multiply the complementary function solutions. 
Having obtained this inner solution we apply the integral relationship (2 .7)  

directly to the circular vortex to give a result analogous to (3.18), obtained for the 
rectilinear vortex. In  this case we integrate over the simply connected toroidal 
volume V with axis VV' and whose cross section is an annulus of radii 6' and T' with a 
cut along x = 0. The  ends of the toroid are the plane surfaces at 0 = -n/2p and 
B = n12p. Again we use the interior expansion for #' and R' when (2.7) is applied and 
then let 6 + 0 and T' + tc on the inner scale. Resolving along the constant vectors 
1, and 1, we obtain the following two scalar relations: 

where the brackets GI and G2 are algebraically extensive. Including only terms which 
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give a contribution when evaluated at the limits, after considerable cancellation, they 
are 

(4.25) 

(4.26) 

Presumably one could deduce the results (4.23) and (4.24) from the basic equations 
for the inner solution, as was (3.16) in the rectilinear case. In  view of the many 
complicated equations involved, however, this would be a difficult task. 

For large T we find 

GI = ( P 2 - l ) l n T +  

Substitution into (4.23) and (4.24) then gives 

dR a Ro2 
- 2 - = 2  2 0  1 + P 2  - + $ A  + ) - (p2  - 1) s," r ( ~ 2 )  dr + so 7 dr]] 

dyp dt c2 [i 2 

as GI and G, are both zero when evaluated at the lower limit. The constants D, and D, 
must be found by matching the interior and exterior solutions. 

Extevior solution 
Here we use the stretched coordinate s = Tjc for the outer variable so that as 

c -+ CO with s of order unity we have the solution in the exterior region. In  terms of 
this exterior variable the steady-state solution Rs, U, is (cf. I 4 3) for s -+ 0 

1 
U, = - ( u s ,  ux, 0 )  

C 

cos x 
(1 - U 0 C ) +  ... 

S 
where 

i: 1 I 
2 

1 = In (:) - 2  U ,  = -sinX+ sinx($- Uoc)+ - +i s s i n 2 ~  

(: 1 1 1  
s 2  

u x = - + - c o s X + c o s X ( l - L ' o c ) +  - + &  scos2x. 
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We IIOW expand +' and R' by writing 

and substitute into (2.3) and (2.4). Then equating the constant terms and coefficients 
of c d 2  in (2.4) gives 

REl = 0 RE2 = - w ~ + ~ ~ +  (4.28) 

while (2.3) also yields 
,, ' 

(4.29) 

An appropriate solution of Laplace's equation (4.29) for a ring is given by 

(4.30) 

Dyson (1893) as 
cosp6 dB 

(x' + c2 + ij2 - zca cos e ) l i z '  
+, = cospe 

I n  addition c(d+,/dc) and c(d+,/dz) are also independent solutions of v2+ = 0. 
J. J. Thomson, in his winning 1882 Adam's Prize essay, has given the value of the 
integral 

when q is almost equal to unity (and x q -  1 is therefore small) as 

X x2 + (Kl(p2-&)i  + M 2 ( p 2 - & ) ( p a - $ ) -  16 +... 
where F(&-p, &+p, 1, -&x) is a hypergeometric series and 

From 

and q 

Thus 

(4.30) it follows 

is given by 

that 

4' 

x =  

m 
K ,  = 2 2: (:I. 

n r- 1 

(4.3 1) 

(4.32) 

which is indeed small near the ring. 

and T2/TI2 for small s from Dyson (p. 48), we obtain the expansion of 4, as 
On substituting into (4.32) from (4.31) and using the expressions for In (4T/T,) 
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The  expansions of 4 p  for small s for p = 0 and p = 1 have been given by 
Dyson (pp. 52-4) and for these values of p his expressions agree exactly with (4.33). 

The  solutions c(d4,ldc) and c(d+,/dx) can now be obtained by using the relations 

d a  a s inx  a d a cosx a _ -  - = -  + cosx- - -- - sinx- + -- 
dc ac aT T ax dx 6T T ax' 

We eventually obtain 

(4.34) 

1 3s 
32 

+ -sin 3x + O(ls2) . (4.35) 

Again expressions obtained by Dyson for p = 0 and p = 1 agree with these results. 
On multiplying (4.34) by - y p  and (4.35) by - clp and adding we have the solution for 

in the required form 

cos 2x 
4 ] + [y + f +(Q-f(p))+ 4 

. (4.36) 

Equation (4.28) then yields 

cosx I 1 + -cOs2x+ -(+u,c)cos2x+ 
s3 2s2 S2 4s2 s 

1 cosx ' 5p2 u,c €2 

2s S I  4 4  4 €1 
+ -cos3x+ --Jj@)(p-q- - - - + - U 2  +i] 
+-(g- cos3x +) U c +...I - c [ ~ + 2 s l s i n 2 X + - ( 4 - ~ ~ c ) s i n 2 X  y p  s inx  I 1 

S S2 

1 P2 I sin x 5p2 3u,c 
- - (T -2) s inx  +-sin3X+ ---(j(p)(p2-8)- 7 - - 

S 2s S 4 

(4.37) 
sin 3x 

Matching 
In  this case in order to express the inner solution for large T in terms of s we must 

replace T by sc and In T by A -  1. Then from equations (4.16) to (4.19) and (4.22) we 
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obtain the expansion of 4' as 

(4.38) 

A comparison of corresponding terms in (4.36) and (4.38) yields 

(4.39) 
We confirm (4.39) by matching the interior and exterior solutions for R' and in 
addition we obtain 

1 3 A  B 
2C 8 2  

U q  = -((h-2B+1) 2 F =  - - - +* 
which is consistent with previous work. 

We are now able to substitute for D, and D, into (4.27). We find that 

( 4 . 4 0 ~ )  

(4.40h) 

where 
L ,  = (p2  - 1)(1n (8c) -2f(p)-4+4 - P(f(p)- 1) 
L2 = f 1 2 (  In (8c) - 2f !p)  - 6 + e , )  + Pf(p). 

Differentiating (4.40b) and substituting for dy,/dt from (4.40~) we finally obtain 

d2zp EP -- - - --L,L, 
dt2 4c4 (4.41) 

and the solutions of (4.41) and (4.40) are 

where 
ap = €1 cos (ut+/&) y p  = E ,  sin (ut +p)  (4.42) 

1 
2c2 

= -- (p2(ln (Xc)-Zf(p) -~+. , )+~ . f (p ) ) l i 2 { (p2 -  1 ) ( h  (8c) -2f (p) -$+~, )  

- #(f(p) - 1 ) y  (4.43) 

(4.44) 

Thus the large vortex ring is stable for all small displacements of its circular axis, of the 
form (4.13). In  terms of our physical variables our expression (4.43) for w becomes 
(1.9) and the solutions may be compared with those obtained by J. J. Thomson 
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(cf. equation (1.10) and equations (37), (42)) in his kinematical treatment of the large 
classical hollow core vortex ring. The  expressions for w differ only by the appearance 
of the eC term which again represents the effect of the core structure in the quantum 
vortex case 

For the special cases p = 0 and p = 1 the results of our analysis contained in 
equations (4.40) have a particular physical interpretation. T o  see this we note that in 
the casep = 0 the initial vortex axis configuration (4.13) is R, = c+  x x p ,  2, = y p  and 
this represents a small upward translation in the direction Ox and a slight increase in 
the radius of the ring. Altering the radius, however, automatically changes the speed 
of the vortex U. which is a function of c, to U,(c+ E ~ ) .  Then, since we are working in 
a frame in which the fluid at infinity is moving with velocity Uo(c),  the vortex will not 
remain at rest but will move with a speed E ~ U ~ ’ ( C )  relative to our fixed axes and 
consequently the distance of the vortex from the plane x = 0 increases linearly with 
time. This subsequent motion is confirmed by equations (4.40) which show that; 
for p = 0, L2 = 0 so that by (4.40b) 

Then by (4.40~)  we have 
dYP -- = 8, = constant 
dt 

y p  = 622+6, 

just as we anticipate. Similarly the displacement given b y p  = 1 in (4.13) is simply a 
translation of the vortex in its own plane along 0 = 0 and a small tilt of the vortex 
about 0 = 0. This tilt slightly alters the direction of the vortex and in this case c(?, 
increases linearly with time, a result which is again predicted by (4.40). 

For large values of p we can neglect the terms in L,  and L2 of the form Af(p) + B 
and the subsequent equations of the circular axis become 

R, = c + COSPO COS( w t  + p) 

where 

and the solutions are similar to those found by Arms and Hama, using their localized- 
induction concept (which corresponds to an omission of long distance effects), for a 
large vortex ring. They obtained 

where the logarithmic behaviour is implicit in the time variable t which has been 
scaled by 4 In l / ~  where E is a cut-off length. 
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If in addition c p (  = Kc) 9 1 we have 

2f (p)  N y + 2 In (2) + Inp  

and our expression for w reduces to the rectilinear result of 5 3. This is to be expected 
as this case is precisely that of a large number of long waves on an ‘infinite’ vortex. 
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